CENTER FOR ASTROPHYSICS

HARVARD & SMITHSONIAN

The Torus in the Presence of Large-scale Extended Hard X-rays

Some implications

AST

Martin Elvis Pepi Fabbiano Mislav Balokovic'

TORUS 2018

The Many Faces of AGN obscuration

Puerto Varas, Chile

Martin Elvis | melvis@cfa.harvard.edu

December 14, 2018

Kiloparsec extended Hard X-rays are common in CT AGN

See Pepi Fabbiano & Franz Bauer talks

Chandra < 0.3" resolution 3 – 6 keV & Fe-K ~50 pc - ~4 kpc radially Up to 70% of observed flux In Compton Thick AGN 2 morphologies: bi-cone and/or "torus"

Martin Elvis | melvis@cfa.harvard.edu

ESO 428-G014

TORUS 2018 Puerto Varas, Chile December 14, 2018

HARVARD & SMITHSONIAN

CENTER FOR ASTROPHYSICS

Fabbiano +2018 II

FWHM(High E) < FWHM(Low E)

High $N_{\rm H}$ material is interior to Low $N_{\rm H}$

Partial covering by high N_H

 \rightarrow Feedback in action?

FWHM(High E) < FWHM(Low E)

High N_H material is interior to Low N_H

Partial covering by high N_H

 \rightarrow Feedback in action?

Milky Way example

Fluorescent Fe-K-I coincident with Molecular Clouds

Martin Elvis | melvis@cfa.harvard.edu

TORUS 2018 Puerto Varas, Chile December 14, 2018

FWHM(High E) < FWHM(Low E)

High N_H material is interior to Low N_H

Partial covering by high N_H

 \rightarrow Feedback in action?

Milky Way example

Fluorescent Fe-K-I coincident with Molecular Clouds

CO maps Compton Thin N_H

C-Thin N_{H} arises in host disk.

[Lawrence & Elvis (1982!) & many others]

 \rightarrow 2 absorbers. (Prieto talk)

Martin Elvis | melvis@cfa.harvard.edu

TORUS 2018 Puerto Varas, Chile December 14, 2018

FWHM(High E) < FWHM(Low E)

High N_H material is interior to Low N_H

Partial covering by high N_H

→ Feedback in action?

Milky Way example

Fluorescent Fe-K-I coincident with Molecular Clouds

CO maps Compton Thin N_H

C-Thin N_{H} arises in host disk.

[Lawrence & Elvis (1982!) & many others]

 \rightarrow 2 absorbers. (Prieto talk)

 \rightarrow Simpler torus

Martin Elvis | melvis@cfa.harvard.edu

TORUS 2018 Puerto Varas, Chile December 14, 2018 CENTER FOR ASTROPHYSICS

FWHM(High E) < FWHM(Low E)

High N_H material is interior to Low N_H

Partial covering by high N_H

→ Feedback in action?

Milky Way example

Fluorescent Fe-K-I coincident with Molecular Clouds

CO maps Compton Thin N_H

C-Thin N_{H} arises in host disk.

[Lawrence & Elvis (1982!) & many others]

 \rightarrow 2 absorbers. (Prieto talk)

→Simpler torus

Martin Elvis | melvis@cfa.harvard.edu

TORUS 2018 Puerto Varas, Chile December 14, 2018

Cross-cone extent = a Porous Torus?

Clear extent perpendicular to bi-cone

Martin Elvis | melvis@cfa.harvard.edu

TORUS 2018 Puerto Varas, Chile December 14, 2018

Cross-cone extent = a Porous Torus?

uet Bionus aretion usk

Clear extent perpendicular to bi-cone

Follows bi-cone extent vs Energy

Holes in the Torus? ~10% transmission

Fabbiano+18 II

Fabbiano+18 II

TORUS 2018 Puerto Varas, Chile December 14, 2018

Cross-cone extent = a Porous Torus?

Clear extent perpendicular to bi-cone

Follows bi-cone extent vs Energy

Fabbiano+18 II

Martin Elvis | melvis@cfa.harvard.edu

TORUS 2018 Puerto Varas, Chile December 14, 2018 CENTER FOR ASTROPHYSICS

Av view from AGN continuum Stalevski et al. (2016) 50 100 150 200 250

Cross-cone extent = a Porous Torus?

Clear extent perpendicular to bi-cone

Follows bi-cone extent vs Energy Holes in the Torus? ~10% transmission Inter-clump medium: N_H(cold)<10²¹ cm⁻² << N_H in e.g. Stalevski et al. 2016 model (also Baskin & Laor 2018?) OK with eclipse events (e.g. Markowitz+14)

TORUS 2018 Puerto Varas, Chile December 14, 2018

Cross-cone extent = Jet blowback?

Hot Cocoon from Jet interaction with Molecular Clouds

E.g. Mukherjee et al. (2018) simulations; Morganti talk

Co-extensive X-ray - Radio

CENTER FOR ASTROPHYSICS

Martin Elvis | melvis@cfa.harvard.edu

TORUS 2018 Puerto Varas, Chile December 14, 2018

Cross-cone extent = Jet blowback?

Hot Cocoon from Jet interaction with Molecular Clouds

E.g. Mukherjee et al. (2018) simulations; Morganti talk

Co-extensive X-ray – Radio

Hard X-ray Extent Perpendicular to bi-cones =Torus?

Figure 2. Two-colour (red: 0.3-2 keV; green: 2-10 keV) *Chandra* image of the $1 \times 1 \text{ arcmin}^2$ central region of NGC 4945.

* a=0.05µm, Graphite

NGC4945 90 x 180 pc

c.f. dust sublimation radius* r_{1500K} ~0.014 pc; **г_{150K} ~ 8 pc**

 \rightarrow Not the torus (as Marinucci+ say)

Larger X-ray structure: molecular/dust ring in host. (CND) (Curran+ 2001)

TORUS 2018 Puerto Varas, Chile December 14, 2018

Hard X-ray Extent **Perpendicular to bi-cones =Torus**?

NGC4945 90 x 180 pc

c.f. dust sublimation radius* r_{1500K} ~0.014 pc; **r_{150K} ~ 8 pc**

 \rightarrow Not the torus (as Marinucci+ say)

Larger X-ray structure: molecular/dust ring in host. (CND) (Curran+ 2001)

NGC5643 ~25 x 65 pc

c.f. dust sublimation radius r_{1500K} ~0.1 pc; **r_{150K} ~ 50 pc**

→ Good torus candidate

Clumpy

& molecular ring in CO (CND) (Alonso-Herrera +2018)

Hard X-ray Extent Perpendicular to bi-cones =Torus?

NGC4945 90 x 180 pc

c.f. dust sublimation radius* r_{1500K} ~0.014 pc; **г_{150K} ~ 8 pc**

→Not the torus (as Marinucci+ say)

Larger X-ray structure: molecular/dust ring in host. (CND) (Curran+ 2001)

NGC5643 ~25 x 65 pc

c.f. dust sublimation radius $r_{1500K} \sim 0.1 \text{ pc}; r_{150K} \sim 50 \text{ pc}$

 \rightarrow Good torus candidate

Clumpy

& molecular ring in CO (CND) (Alonso-Herrera +2018)

Connection? (Prieto, Storchi-Bergman talks)

Need all temperatures @ hi resolution

CENTER FOR **ASTROPHYSICS**

TORUS 2018 Puerto Varas, Chile December 14, 2018

Extended Hard X-rays Effect on Torus parameters?

Much of Hard X-rays/Fe-K is not from the Torus

Ignoring this means overestimating Torus reflection/fluorescence. I.e. $C_{tor} \times e^{-N_H \sigma}$

E.g. borus02 model (Balokovic' et al. 2018)

Error bars increase to +/- 10%

For some model choices torus covering factor drops to \sim 20%, 1/2 - 1/3 previous value.

 \rightarrow Models need adapting

→ Better data: >50 keV, $E/\Delta E$, ang.res.

Martin Elvis | melvis@cfa.harvard.edu

TORUS 2018 Puerto Varas, Chile December 14, 2018 CENTER FOR ASTROPHYSICS

The Way forward

Need high spatial resolution + high spectral resolution = Lynx + microcalorimeter array 50X Chandra area; 0.5 arcsec Resolving power: R = 3000 = 100 km s⁻¹ @ 6 keV R = 500 = 600 km s⁻¹ @ 1 keV

"IFU" with lots of photons

Martin Elvis | melvis@cfa.harvard.edu

TORUS 2018 Puerto Varas, Chile December 14, 2018 CENTER FOR ASTROPHYSICS

Extended Hard X-rays in CT AGN Summary of Implications

Much of the Hard X-rays/Fe-K in CT AGN is not from the Torus

Reflection off ISM molecular clouds

- \rightarrow feedback in action
- = Compton Thin $N_H \rightarrow 2$ absorbers

Cross-cone emission:

- Porous Torus?
 - Inter-clump medium: cold N_H <10²¹ cm⁻²
- Jet Blowback? radio-hard X-ray

Changes Torus parameters

- needs adapting models, more data

CENTER FOR

We need X-RAY OBSERVATORY

Martin Elvis | melvis@cfa.harvard.edu

TORUS 2018 Puerto Varas, Chile December 14, 2018

HARVARD & SMITHSONIAN

ASTROPHYSICS