Molecular Gas in the Nuclear Regions of Nearby Dual AGN

Ezequiel Treister P. Universidad Católica, Chile

Collaborators: Franz Bauer (PUC), Claudio Ricci (UDP), George Privon (U.Fl.), Hugo Messias (ALMA JAO), Kevin Schawinski (ETH), Mike Koss (Eureka), Dave Sanders (IfA), Meg Urry (Yale), Francisco Muller-Sanchez (U. of Memphis), Julie Comerford (Colorado), the BASS and MODA collaborations

(c) Interaction/"Merger"

(d) Coalescence/(U)LIRG

(e) "Blowout"

(f) Quasar

(b) "Small Group"

NGC 7252

SMBH Growth and SF Simulations

Van Wassenhove et al. (2012)

Blecha et al. (2011)

SMBH Growth and SF Simulations

Blecha et al. (2018)

Compton Thick AGN Fraction

Ricci et al. (2017)

AO Observations of Swift-BAT AGN

Koss et al. (2018)

AO Observations of Swift-BAT AGN

Koss et al. (2018)

The Importance of Dual AGN

Multiwavelength Observations of Dual AGN MODA

Tracing the structure and kinematics of the gas in all its phases (atomic, ionized, molecular) in confirmed nearby dual AGN.

Main instruments: ALMA, VLT MUSE, SINFONI and VISIR, Keck/OSIRIS Supporting observations with XMM, Chandra and NuSTAR

Sample: 17 confirmed (X-rays) dual AGN at z<0.1

More information: http://moda.astro.puc.cl

Mrk 463

Optical galaxy

X-ray/NIR Nuclei

Bianchi et al., 2008

Mrk 463 MUSE Image

Treister et al., 2018

Mrk 463 [OIII] to Hβ

Treister et al., 2018

Mrk 463 [OIII] Velocity Diagram

Treister et al., 2018

Mrk 463 ALMA CO(2-1) Velocity Map

NGC6240

- $L_{IR} = 8.5 \times 10^{11} L_{o}$
- SFR≤150 M_oyr⁻¹
- Dual AGN
- Each SMBH M≈8x10⁸M_o (Medling+2015)

(Heckman+1987, Komossa+2003, Armus+2009, Medling+2011, Feruglio+2013ab)

ALMA Cycle 4 Observations of NGC6240

Blue = F450W HST Green = F814W HST Red = ALMA CO(2-1) 2" Band 6 CO(2-1) ~0.03" res (15pc) ~5 hrs integration

Ν

IRAM PdBI CO(2-1) Map

Tacconi et al. 1999

ALMA Cycle 4 Observations of NGC6240

NGC6240 CO(2-1) Moment 0 Map

 $1.2 \times 10^{10} M_{o}$ in mol. gas in central region. **BH** Sphere of influence ~220pc (15 res elements) Southern nucleus: 1.5x10⁹M_o Northern nucleus: 6.6x10⁸M_o

Continuum

NGC6240 235 GHz Continuum

Detected continuum emission around nuclei.

Southern nucleus: $1.5 \times 10^9 M_o$ (~half unresolved)

Northern nucleus: 8.5x10⁸M_o

NGC6240 CO(2-1) Velocity Map

Velocity gradient between the nuclei ~500km/s outflow, ~ 10^9M_o of mol. gas Rotation in southern nucleus, gradient in northern one.

High Velocity Structure

>500km/s structure

 $\sim 10^9 M_o$ of mol. gas

Appears connected with the Northern nucleus

Southern SMBH Mass

Enclosed mass in southern ~30pc >2x10⁸M_o

Broadly consistent with previous measurement by Medling et al. 2015: ~8.8x10⁸M_o

M-Sigma Relation

Medling et al. (2015)

M-Sigma Relation

System still has $\sim 10^{10} M_0$ in the central region available for both star formation and SMBH growth

Medling et al. (2015)

Conclusions

Significant (heavily obscured) SMBH associated with major galaxy mergers, in particular near coalescence.

The dual AGN phase can be very important to establish the SMBH galaxy evolution connection.

Mrk 463 shows potential molecular inflows of ~100 M_0 /yr, comparable to the observed ionized outflows and SFR. Evidence for AGN-driven outflows reaching scales of 10s kpc.

High resolution (15pc) ALMA CO(2-1) observations show filamentary clumpy structure between the two nuclei, with $\sim 10^{10}M_0$ in molecular gas.

While currently above the M-sigma relation, enough mol. gas to reach the correlation.