A Radio Absorption Study of AGN Tori

Seiji Kameno (Joint ALMA Observatory / NAOJ)

M. Inoue, K. Wajima, S. Sawada-Satoh, Z.-Q. Shen for plasma free-free absorption collaborated with

V. Impellizzeri, D. Espada, S. Martin, S. Sawada-Satoh, N. Nakai, H. Sugai, Y. Terashima, K. Kohno, L. Minju for molecular absorption lines

Multiple ingredients in AGN tori

Density [cm-3]

H₂O maser

VLBA 5 GHz

Gallimore+97,04

Dust

Core of Galaxy NGC4261 MiC33-47 - 67 Sci C/12 - December 4, 1999 R. Foel and L. Fertaness (JHD), KASA

HST - WFPC2

Molecular gas

Neutral gas (H_l)

Torus 2018 In Puerto Varas, Seiji Kameno : A Radio Adsorption Study of AGN Tori

Summary

Radio absorption observations offer...

- Distribution of thermal plasma (w/ background synchrotron emitter)
- Velocity of molecules along the line of sight

For the torus structure and dynamics

- Temperature and density
- Chemical composition in molecular torus
 - CO, HCN, HCO+, CS, SO, and CN
 - isotopologues : H¹³CN, HC¹⁵N
 - vib-excited HCN, HCO+
- Vertical structure of a geometrically thick torus
 - Molecular + XDR + plasma
 - Clumpy molecular clouds

Plasma free-free absorption

optical depth is proportional to the emission measure

Plasma free-free absorption

Plasma free-free absorption

Plasma free-free absorption survey

- 19 GPS sources
 - (young radio galaxies)
- five-frequency
 - VSOP + VLBA obs.
- 6/19 show torus-like FFA

Plasma free-free absorption survey

Spatial coincidence of FFA and H₂O masers

Masers (XDR) locate where $\tau_{FFA,~22~GHz} \sim 0.2$ Amplification of background jet radiation

ALMA molecular absorption survey in nearby radio galaxies

ALMA molecular absorption survey in nearby radio galaxies

Source	Host galaxy	FFA	Dust disk	Emission	Absorption
NGC 1052	E	Y	Y	CO	CO, HCN, HCO ⁺ , SO, CS, CN, H ₂ O, HCS ⁺
NGC 4261	E	Y	Y	CO	CO, HCN, HCO+, CS
NGC 6328	SAB	?	Y	CO, HCO+, CS	HCO+
IC 1459	E	?	Y	-	CO, HCO+ (?)
3C 75	E, binary	?	?	_	CO (?)

NGC 1052

Host galaxy

Distance

Velocity

E4 B_T=11.41 mag

20.3 Mpc, 1"=98 pc

Vsys(LSR, Radio) = 1471 km s⁻¹

Molecular gas distribution and velocity (CO)

CO (3-2) total intensity map

CND (CircumNuclear disk) rotation

radius ~ 100 pc
rotation speed ~ 150 km s⁻¹
enclosed mass = 5x10⁸ M⊙

Torus 2018 in Puerto Varas, Seiji Kameno : A Radio Absorption Study of AGN Tori

Long-baseline view

NGC1052_B7C0spw0.mom0-raster

High-resolution velocity field

CO line profile toward the nucleus

Absorption features

Spectra toward the nucleus

Torus 2018 in Puerto Varas, Seiji Kameno : A Radio Absorption Study of AGN Tori

CO, HCN, HCO+, CS, SO, and CN

Optical depths

- Mostly redshifted w.r.t. Vsys
- Wider than CND

 $V \text{sys}_{-100}^{+250} \text{ km s}^{-1}$

HCN deeper than CO

$$\mathrm{EW} = \int \tau(v) \ dv = 24.4 \ \mathrm{km s^{-1}}$$

Absorption features are likely to originate in a molecular torus

Presence of vibrationally excited lines

HCN J=4-3 and HCO⁺ J=4-3

- line ratio (v=0 to v2=1) : R=0.6
- if optically thin, $T_{ex} = 520 \text{ K}$
- IR (14 μ m) pumping from hot dust?

Sakamoto+2010, ApJL, 725, L228

Locating HCN absorption with KVN

Sawada-Satoh+2016: HCN absorption with KVN

- absorption feature toward receding jet
- clumpy, with a filling factor ~ 0.03

00

Absorption features and H₂O maser

- Asymmetric profile
 - sharp red edge
- Less redshifted than H₂O maser
- Inside molecular torus?

Torus 2018 in Puerto Varas, Seiji Kameno : A Radio Absorption Study of AGN Tori

NGC 4261

(a) NGC 4261

Host galaxy E2-3 30.56 Mpc, 1"=181 pc Distance Velocity Vsys(LSR, Radio) = 2214 km s⁻¹ Radio continuum 0.21 Jy@345 GHz Free-free absorption (Haga+16)

NGC 4261 : CO emission in CND

- Keplerian rotating disk
- M_{enc} = 8x10⁸ M_{\odot} = 1.6 M_{BH}
- Coincidence with the dust disk

NGC 4261 : absorption lines

NGC 4261 Band 7

NGC 6328

http://hla.stsci.edu

Hubble Legacy Archive

Host galaxySABDistance61.25 Mpc, 1"=306 pcVelocityVsys(LSR, Radio) = 4324 km s^{-1}Radio continuum0.2 Jy@345 GHzGHz-Peaked Spectrum source (Tingay+97)H2 molecular absorption (Maccagni+16)

CO (J=3-2) emission

- Galactic arm structure
- Coincidence with the dust lane

NGC 6328 : molecular lines

NGC 6328 Band 7

IC 1459 : CO and HCO⁺ absorption (?)

IC 1459 Band 7

Torus 2018 in Puerto Varas, Seiji Kameno : A Radio Absorption Study of AGN Tori

-0.004

-0.002

0.002

0.004

Optical Depth 0.000

2200

3C 75

Double radio galaxy (projected separation= 7.2 kpc) Both have extended double-sided jets

VLA 5 GHz (Owen+85)

ALMA 340 GHz (this work)

3C 75 : high-velocity CO absorption?

LSR Velocity [km/s]

ALMA molecular absorption survey in nearby radio galaxies

3/5 confident + 2/5 marginal detections

Source	Host galaxy	FFA	Dust disk	Emission	Absorption
NGC 1052	E	Y	Y	CO	CO, HCN, HCO ⁺ , SO, CS, CN, H ₂ O, HCS ⁺
NGC 4261	E	Y	Y	CO	CO, HCN, HCO+, CS
NGC 6328	SAB	?	Y	CO, HCO+, CS	HCO+
IC 1459	E	?	Y	-	CO, HCO+ (?)
3C 75	E, binary	?	?	-	CO (?)

Summary

Radio absorption observations offer...

- Distribution of thermal plasma (w/ background synchrotron emitter)
- Velocity of molecules along the line of sight

For the torus structure and dynamics

- Temperature and density
- Chemical composition in molecular torus
 - CO, HCN, HCO+, CS, SO, and CN
 - isotopologues : H¹³CN, HC¹⁵N
 - vib-excited HCN, HCO+
- Vertical structure of a geometrically thick torus
 - Molecular + XDR + plasma
 - Clumpy molecular clouds

