BAT AGN prefer circumnuclear star formation

Dieter Lutz MPE

Torus 2018 The many faces of AGN obscuration

Puerto Varas, December 12, 2018

What is the size and structure of star formation (or cold gas) in galaxies as a function of SFR, M*, z, AGN content...?

- Inside-out growth of star forming galaxies?
- Compaction in gas rich instable disks?
- Gas inward transport in mergers?
- Relation of star formation to Black Hole accretion?

Methods

og(SFR) [M_o/yr]

Rest-UV/optical continuum, Hα • Obscured for massive dusty galaxies and outliers, AGN contamination

More extinction insensitive:

Mid-IR imaging or long-slit spectra ightarrowe.g., Soifer+00,01, Diaz-Santos+10,11 Sample sizes, AGN contamination

Radio interferometry 0 e.g., Condon+90,91, Barcos-Munoz+17 Sample sizes, AGN contamination

(sub)mm interferometry of dust or CO 0 e.g., Sakamoto+99 Sample sizes, have to assume star formation law

Far-infrared imaging • No sensitive far-infrared interferometry in the foreseeable future

Herschel FIR sizes for hundreds of galaxies

 $FWHM_{Source} = \sqrt{FWHM_{Obs}^2 - FWHMPSF(\alpha)^2}$

Overall FWHM, not a detailed map, simplifying Consistently available for hundreds of targets

Scaling relations for R_e and Σ_{FIR} , link to [CII] deficit, candidates for molecular outflows...

Herschel: Link of flickering BHAR and SFR – 'unsynchronized coevolution'

Average BHAR for samples selected in bins of SFR, M*, z (Delvecchio+15)

Average SFR for samples selected in bins of instantaneous BHAR, z (Rosario+12)

Shao+10, Rosario+12,13, Santini+12, Mullaney+12ab, Chen+13, Hickox+14, Stanley+15, Delvecchio+15...

Structural differences favouring AGN, if BHAR and SFR fed from same gas reservoir?

NUGA project @ IRAM PdB

To establish the role of intriguing features, such data would be needed for very large samples of AGN and reference galaxies! Difficult to have a *tight* link SFR/BHAR

Star formation up to kpc and 10kpc scale

BH sphere of influence ~tens of pc Event horizon ~µpc

PG QSO hosts agree with galaxy scalings

Optically thin AGN-heated FIR emission would be larger than observed size... FIR from host SF!

.. But limited by distance, faintness, and sample size – Different AGN sample?

Swift-BAT sample to the rescue

Selected by extremely hard 14-195keV Xray – will catch all but the most obscured AGN

z<0.05 BAT AGN from 58 month version observed with Herschel PACS & SPIRE photometers: Mushotzky+14 Melendez+14 Shimizu+15,16,17

→ Apply the tuned 'Herschel-PACS size measurement' machine to BAT sample and as large as possible reference sample

Sample

Huge scatter, but modest SFR AGN hosts are on average more compact

kpc scale gas reservoir/SF and accretion know about each other

... but due to the many intermediary transport steps they barely understand each other

Are we fooled by compact AGN-heated dust?

Why no size difference at higher SFR?

For limited gas content of local galaxies, high SFR needs compact gas in the first place?

What can we expect from a gas distribution experiment at 10pc 'torus' resolution?

(NIR adaptive optics, Alma)

- Obviously and naively a tighter link, but
- Dynamical times are still large compared to AGN flickering/ accretion variations
- Any non-AGN reference sample is contaminated by yesterday's and tomorrow's AGN, with ~same structural properties
- Hopefully not "it's all very complex"

Thank you!

- Characteristic size and surface brightness of FIR emission (star formation) in several hundred local AGN and normal or IR-luminous galaxies
- At same SFR, local AGN prefer more compact circumnuclear star formation (but note large scatter!)
- Accretion and SF feed from galaxy's gas reservoir, with more efficient AGN feeding if reservoir is more concentrated – some link is left over the many orders of magnitude inward transport

Lutz+16 A&A 591, A136, Lutz+18 A&A 609, A9, work in progress