TORUS 2018 - The many faces of the AGN obscuration Investigating the nature and geometry of NG-C 1068 through NuSTAR observations and future X-ray polarimetry

> Alessandra Zaino - Roma Tre University In collaboration with: S. Bianchi, A. Marinucci and G. Matt

) The 2017-2018 NuSTAR monitoring

What can we expect from X-ray polarimetry?

Summary and conclusions

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018.12.11

The dusty torus in NGC 1068

□ Interferometric mid-infrared observations of NG-C 1068 > spatial resolution of the dust structures

Dust emission components in the nucleus of NGC 1068						
Component	Т	Δ	∥ jet	Δ	⊥ jet	${m au}_{ m SiO}$
	(K)	(mas)	(pc)	(mas)	(pc)	
Hot	>800	10 ± 2	0.7 ± 0.2	<12	<1	2.1 ± 0.5
Warm	320 ± 30	30 ± 5	2.1 ± 0.4	49 ± 4	3.4 ± 0.3	0.3 ± 0.2

Jaffe et al. 2004

Torus consistent with a two-component dust distribution:

- o an inner (0.7±0.2 pc) hot (T > 800 K) component;
- o a more extended (~3-4 pc) colder component (T~320 K).

A.Zaino - Investigating the nature and geometry of NGC 1968 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018.12.11

Unveiling the nucleus of NGC 1068 NGC 1068 in X-rays > multi-epoch X-ray observations until 2012

Date 5 Dec 30 6 Dec 30 8 Jan 11 8 Jan 11 9 Feb 21 0 Jul 29 0 Jul 30 14 Dec 94	Obsid 5004700100 5004700100 5004700120 5004700120 344 0111200101 0111200201	Exp. 100.8 116.6 37.3 31.5 47.7 32.8	Energy Band 3–10 15–140 3–10 15–140 0.4–8
 Dec 30 Dec 30 Jan 11 Jan 11 Feb 21 Jul 29 Jul 30 	5004700100 5004700100 5004700120 5004700120 344 0111200101 0111200201	100.8 116.6 37.3 31.5 47.7 32.8	3–10 15–140 3–10 15–140 0.4–8
6 Dec 30 8 Jan 11 8 Jan 11 1 Feb 21 0 Jul 29 0 Jul 30	5004700100 5004700120 5004700120 344 0111200101 0111200201	116.6 37.3 31.5 47.7 32.8	15–140 3–10 15–140 0.4–8
8 Jan 11 8 Jan 11) Feb 21 0 Jul 29 0 Jul 30	5004700120 5004700120 344 0111200101 0111200201	37.3 31.5 47.7 32.8	3–10 15–140 0.4–8
8 Jan 11) Feb 21 0 Jul 29 0 Jul 30	5004700120 344 0111200101 0111200201	31.5 47.7 32.8	15–140 0.4–8
) Feb 21 0 Jul 29 0 Jul 30	344 0111200101 0111200201	47.7 32.8	0.4-8
0 Jul 29 0 Jul 30	0111200101 0111200201	32.8	
0 Jul 30	0111200201		0.2–10
Dec 04		28.7	0.2-10
Dec 04	332	25.7	0.3-8
Feb 10	701039010	61.5	0.3-9
Feb 10	701039010	38.8	15-70
Nov 18	10816	16.2	0.8-10/0.4-8
Nov 19	9149	89.4	0.8-10/0.4-8
Nov 20	10815	19.1	0.8-10/0.4-8
Nov 22	10817	33.2	0.8-10/0.4-8
Nov 25	10823	34.5	0.8-10/0.4-8
Nov 27	9150	41.1	0.8-10/0.4-8
Nov 30	10829	39.6	0.8-10/0.4-8
Dec 03	10830	44.0	0.8-10/0.4-8
Dec 05	9148	80.2	0.8-10/0.4-8
04-2010		9250.0	14-195
Dec 18	60002030002	56.9/56.8	3-79
	00080252001	2.0	0.5-10
Dec 19	60002030004	47.8/47.5	3-79
Dec 19 Dec 20	60002030006	19.2/19.4	3–79
	04–2010 2 Dec 18 2 Dec 19 2 Dec 20 2 Dec 21	04-2010 2 Dec 18 60002030002 2 Dec 19 00080252001 2 Dec 20 60002030004 2 Dec 21 60002030006	04-2010 9250.0 2 Dec 18 60002030002 56.9/56.8 2 Dec 19 00080252001 2.0 2 Dec 20 60002030004 47.8/47.5 2 Dec 21 60002030006 19.2/19.4

The broadband cold reflected emission of NGC 1068 is due to multiple reflectors with three distinct column densities.

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018,12,11

Unveiling the nucleus of NGC 1068 NGC 1068 in X-rays

> 2014-2015 XMM-Newton & NuSTAR joint campaign

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018.12.11

The 2017-2018 NuSTAR monitoring

	obsID	Start time	Stop time	Detector	Net exposure	Net count rat	$e [counts s^{-1}]$
					time [ks]	3-5.5 keV	20-80 keV
OBS 1	60302003002	2017-07-31 00:16:09	2017-08-01 03:26:09	FPMA	50.0	0.0246 ± 0.0007	0.0289 ± 0.0009
				FPMB	49.8	0.0240 ± 0.0007	0.0262 ± 0.0008
OBS 2	60302003004	2017-08-27 20:51:09	2017-08-29 03:36:09	FPMA	52.5	0.0253 ± 0.0007	0.0332 ± 0.0009
				FPMB	52.4	0.0256 ± 0.0007	0.0309 ± 0.0009
OBS 3	60302003006	2017-11-06 03:31:09	2017-11-07 06:31:09	FPMA	49.7	0.0254 ± 0.0007	0.0301 ± 0.0009
				FPMB	49.5	0.0236 ± 0.0007	0.0281 ± 0.0008
OBS 4	60302003008	2018-02-05 05:26:09	2018-02-06 11:36:09	FPMA	54.6	0.0313 ± 0.0008	0.0276 ± 0.0008
				FPMB	54.5	0.0299 ± 0.0008	0.0261 ± 0.0008

Zaino et al. in prep. a, F_{3-5,5kev} increases by ~35% in Feb 2018 2×10-4 b. No evidence of Fe lines variation 104 normalized counts s⁻¹ keV⁻¹ cm⁻² 5×10⁻⁵ L2-10kev ~ 4×1040 erg s-1 0.01 2×10⁻⁵ normalized counts s^{−1} keV^{−1} 10^{−3} 10-5 L2-10kev < 1039 erg 5-1 July 2017 Aug 2017 5×10⁻⁶ Nov 2017 Feb 2018 Feb 2018 Nov 2017 5 10 20 50 ¦_ ∟ ∽0.5 2 5 Energy (keV) Energy (keV)

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018.12.11

The 2017-2018 NuSTAR monitoring

	obsID	Start time	Stop time	Detector	Net exposure time [ks]	Net count rat 3-5.5 keV	e [counts s ⁻¹] 20-80 keV
OBS 1	60302003002	2017-07-31 00:16:09	2017-08-01 03:26:09	FPMA	50.0	0.0246 ± 0.0007	0.0289 ± 0.0009
				FPMB	49.8	0.0240 ± 0.0007	0.0262 ± 0.0008
OBS 2	60302003004	2017-08-27 20:51:09	2017-08-29 03:36:09	FPMA	52.5	0.0253 ± 0.0007	0.0332 ± 0.0009
				FPMB	52.4	0.0256 ± 0.0007	0.0309 ± 0.0009
OBS 3	60302003006	2017-11-06 03:31:09	2017-11-07 06:31:09	FPMA	49.7	0.0254 ± 0.0007	0.0301 ± 0.0009
				FPMB	49.5	0.0236 ± 0.0007	0.0281 ± 0.0008
OBS 4	60302003008	2018-02-05 05:26:09	2018-02-06 11:36:09	FPMA	54.6	0.0313 ± 0.0008	0.0276 ± 0.0008
				FPMB	54.5	0.0299 ± 0.0008	0.0261 ± 0.0008

Zaino et al. in prep.

NGC 1068 shows a behaviour similar to that observed three years ago

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018,12,11

Results

We adopt the Bauer +15 model leaving only the obscuring N_H and flux of the primary component free to vary.

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018.12.11

Results

To break the N_H-norm degeneracy, we assume the same intrinsic X-ray luminosity during the whole monitoring...

We obtain an intrinsic X-ray luminosity of 3.5×1043 erg/s, fully consistent with those inferred using other proxies (e.g. mid-IR and [OIII]).

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018,12,11

Results

To break the N_H-norm degeneracy, we assume the same intrinsic X-ray luminosity during the whole monitoring...

Zaino et al. in prep.

$$R = (0.06^{+0.10}_{-0.04})M_7 n_{10}^2 pc$$

$$\frac{10^7 M_0}{N_H^2} \sim 1.334 \times 10^{53} \frac{E^2}{N_H^2} cm$$

$$\frac{0B51 -- 0B52}{N_H^2} cm^{-2}$$

$$R = (2.0^{+1.2}_{-1.1}) \times 10^{24} cm^{-2}$$

$$R = (0.06^{+0.10}_{-0.03})M_7 n_{10}^2 pc$$

$$\frac{0B53 -- 0B54}{R + 2(2.4^{+0.5}_{-0.6}) \times 10^{24} cm^{-2}}$$

$$R \le (0.46^{+0.36}_{-0.14})M_7 n_{10}^2 pc$$

We observe two unveiling events due to Compton-thick material Located in the innermost part of the torus or even more inside.

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018,12.11

Imaging X-ray Polarimetry Explorer (IXPE)

INAF NASA SMEX mission *iaps* Marshall Space Flight Center ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS NASA-ASI collaboration PI team, project management, Polarization-sensitive SE and S&MA oversight, mirror imaging detector systems Launch: April 2021 module fabrication, X-ray **Prise ASP** Mission operations calibration, science operations, (now in phase C) and data analysis and archiving ROMA Stanford Scientific theory TRE Detector system funding, ground station McGill **Co-Investigator** Spacecraft, payload structure, payload, **Co-Investigator** Institute of observatory I&T A12567-151

Energy band: 2-8 keV

Three polarization sensitive X-ray detector units (DUs), each paired with a corresponding grazing incidence mirror module assembly (MMA)

Parameter	Value		Parameter	Value	
Number of shells	24		Sensitive area	15 mm×15 mm	
per mirror module	~ (Fill gas and	He/DME (20/80) @ 1 atm	
Shell material	nickel-cobalt alloy		composition		
Effective area	230 cm² (@ 2.3 keV) >240 cm² (3-6 keV)		Detector window	50-µm thick beryllium	
per mirror module			spatial resolution	≤ 123 μm (6.4 arcsec)	
Angular resolution (HPD)	< 25 arcsec		(FWHM)	e z kev	
Field of view (detector limited)	12.9 arcmin square		Energy resolution (FWHM)	0.54 keV @ 2 keV	

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018.12.11

X-ray polarimetry of NGC 1068

Geometry
 the ionization cone
 is perpendicular to
 the torus' plane

I case $(\theta = 30^\circ; i=75^\circ)$ cold: P = 72%; $\Psi = 0^\circ$ warm: P = 67%; $\Psi = 0^\circ$

old polarization

accr. disc + equatorial torus $(N_{\rm H} = 10^{25} \text{ cm}^{-2})$

◇ Input model
Total flux: $F_{2-8keV} = 4.2 \times 10^{-12} \text{ erg cm}^2 \text{ s}^{-1}$ Warm reflection continuum from the cone: $F_{2-8keV} = 10^{-12} \text{ erg cm}^2 \text{ s}^{-1}$ Cold reflection continuum from the torus: $F_{2-8keV} = 1.8 \times 10^{-12} \text{ erg cm}^2 \text{ s}^{-1}$ Emission lines (warm+cold): $F_{2-8keV} = 1.4 \times 10^{-12} \text{ erg cm}^2 \text{ s}^{-1}$

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018.12.11

2.2 Ms IXPE simulation

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018.12.11

2.2 Ms IXPE simulation

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018,12,11

Summary and conclusions

□ Analysis of the latest NuSTAR monitoring of NGC 1068, composed of 4 observations of ~50 ks each probing time-scales from 1 to 6 months.

(1) A brand new flaring ULX reaching a luminosity of ~ $4 \times 10^{4\circ}$ erg/s in three months and disappearing in the following four months;

2 Two unveiling events due to Compton-thick material located in the innermost part of the torus or even more inside.

2.2 Ms IXPE simulations for two different geometries of NGC 1068

(1) $\theta=30^\circ$: high polarization degree and possibility to check the tilted cone hypothesis; 2 $\theta=60^{\circ}$: Lower polarization degree, but greater than MDP=5%. Challenging (source complexity, high t_{exp}, ...), but still possible measures

The ideal source for this kind of analysis would seem to be Circinus

Source	$(\times 10^{-12} \text{ erg/cm}^2/\text{s})$	(ks)
Circinus	15.0	600
NGC 7582	6.5	1400
Mrk 3	5	1800
NGC 1068	4.2	2200

A.Zaino - Investigating the nature and geometry of NGC 1068 through NuSTAR observations and future X-ray polarimetry - TORUS 2018, Puerto Varas, 2018.12.11

TORUS 2018 – Puerto Varas, 10-14 December 2018

Any questions?