

European Research Council

The Dust Sublimation Region in Nearby AGN

Bella Boulderstone¹, Sebastian Hönig, Triana Almeyda

School of Physics and Astronomy University of Southampton, UK

December 11 2018

¹Bella.Boulderstone@soton.ac.uk, @BBoulderstone

Lag-Luminosity Relationship

Figure: A plot showing the lag-luminosity relationship from Koshida et al. 2014

VEILS

Southampton

AGN as Standard Candles

• Use τ as a proxy for luminosity to create a Hubble Diagram.

Figure: A simulated AGN Hubble Diagram. Image credit: Hönig et al. 2017.

VEILS

- Southampton
- Use τ as a proxy for luminosity to create a Hubble Diagram.
- Need Low Intrinsic Scatter

Dust Reverberation Mapping

Continuum Reverberation Mapping

- Accretion disc emits in UV through V bands
- ► Torus absorbs & re-emits
 - ▶ Hottest dust emits in K band, corresponds to sublimation temperature, $T_{\rm sub} \sim 1,500{\rm K}.$

 \downarrow

 \downarrow

- Monitor AGN in V and K band. Find Delay in emission τ .
- From $\tau = R_{sub}/c$, find Sublimation Radius R_{sub} .
- \blacktriangleright Use τ as a proxy for Luminosity from $L\propto T^4R^2$

The Sample

Southampton

- \blacktriangleright Low Redshift Type 1s, $z\sim 0.015$
- ▶ 15 AGN, 3 NLSy1s, 4 previously reverberation mapped
- Monitoring:
 - $\blacktriangleright\,$ V ($\sim 0.5 \mu {\rm m})$ and K ($\sim 2 \mu {\rm m})$ band
 - SMARTS 1.3m telescope

Figure: CTIO - Cerro Tololo Inter-American Observatory

Light Curves

Southampton

Figure: Light curve for NGC3783, V band in blue, K band in red.

Figure: ESO323-G77, both figures from Boulderstone et al. [in prep].

Light Curves

Interpolations

Southampton

Figure: Light curve for NGC3783, V band in blue, K band in red.

Figure: ESO323-G77, both figures from Boulderstone et al. [in prep].

Results

Cross Correlation

Figure: Cross correlation function for NGC3783. The vertical lines on each plot show the result and the 1σ confidence boundaries.

Figure: CCF for ESO323-G77. The shaded regions on each plot show the 1σ and 2σ confidence regions.

Results Histograms

Southampton

Figure: Histogram showing the frequency distribution for the peaks CCFs NGC3783, $\tau=56^{+13}_{-18}~{\rm days}$

Figure: The same but for ESO323-G77, $\tau = 128^{+37}_{-35}$ days.

Discussion

Southampton

Lag Luminosity Relationship

Figure: Our results with those from Koshida et al. 2014. The red line dashed line has a gradient of 0.5.

Figure: Our results for the gradient of the slope, $\beta=0.38\pm0.037$ from Bayesian Analysis.

Discussion

Southampton

Lag Luminosity Relationship

Figure: Our results with those from Koshida et al. 2014. The red line dashed line has a gradient of 0.5.

Figure: Our results for the value of the intrinsic scatter: $\sigma=0.011^{+0.007}_{-0.004}$

Summary & Future Work

- \blacktriangleright Result for NGC3783 of $\tau=56^{+13}_{-18}$ days, $R_{\rm sub}\sim 0.047~{\rm pc}$
- \blacktriangleright Result for ESO323-G77 of $\tau = 128^{+37}_{-35}$ days or $R_{\rm sub} \sim 0.11~{\rm pc}$
- ▶ Result is consistent with other Seyfert 1 Galaxies.
- Low intrinsic scatter $0.011_{-0.004}^{+0.007}$
- Bootstrapping of our points.
- Removal of accretion disc component and host galaxy from CCF
- Repeat with other AGN in our sample

↓ Continue laying groundwork for VEILS.