Hypercat - Hypercube of AGN tori

Robert Nikutta (NOAO)

Enrique Lopez-Rodriguez (SOFIA), Kohei Ichikawa (Tohoku Univ.) Nancy Levenson (STScI), Chris Packham (UTSA)

TORUS2018, December 2018, Puerto Varas / Chile

イロト (個) (目) (目) (目) 日 ののの

CLUMPY torus model

- single cloud optical depth τ_v clouds/ray in equatorial plane N_0 angular torus width σ torus thickness $Y = R_o/R_d$ radial cloud distribution r^{-q}
- observer viewing angle i

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CLUMPY so far: SEDs

Most du jour torus models; Nenkova+2002, 2008a&b; 1100 citations

Model SEDs brought to you since 2008

www.clumpy.org

Model description	SEDs	inages	Contact	News & Updates	
Welcom	е				
Velcome to the home of Integratiz of Kentucky, e	CLUMPY, a o rd is new dev	ode modeling Al cloped and main	SN clumpy dust i itsined at <u>NOAO</u>	ionus emission. It was originally developed at the	
ump straight to the <u>Mor</u>	el Description				
r download the SEDs					
e (coming soon) downlo	ad the <u>Inserv</u>	de of trightnes	5.0005		
lease follow the latest	inns & Updan	s, as the model	s may change at	any time.	
Disclaimer					
Il clats available on our cel free lo use them for ibliographic references	website are p the benefit of y are:	iblic, and reflect rour research, p	the latent state o rovided that ackn	of our scientific research and development. Pleas confedgment is made is each publication. The	e
Ankova, M., Stocky, M	M, hearic, Z	s Elters, M., 👾	2N Durity Tort 1.	Handing of Change Media", 2008, ApJ, 685, 147	
Antoness", 2008, ApJ	M., NRs83, R 685, 160'	, freait, Z. & El	text M., <u>"AON D</u>	usty Tori, IL Observational Implications of	
lease note that roodels ere and always use the	may be subje- latest models	tt to <u>changes or</u> available.	updates at any t	ine. Therefore, please make sure to check back	
ast modified on Sal 29	April 2017 by	Tobert Nikutta			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CLUMPY torus model

single cloud optical depth τ_v clouds/ray in equatorial plane N_0 angular torus width σ torus thickness $Y = R_o/R_d$ radial cloud distribution r^{-q} observer viewing angle i

Torus now resolvable, VLTI, ALMA, and TMT, GMT, ELT

Imanishi+2018 (see also Garcia-Burillo+2016, Gallimore+2016)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Resolved dust emission in the Mid-IR (VLTI)

- More AGN with polar elongation MIR emission observed (see e.g. Hoenig+2013, Lopez-Gonzaga+2016, Leftley+2018)
- Non-physical, direct modeling of the brightness distribution seen by the interferometer

Some proposed solutions

HYPERCAT in nutshell

HYPERCAT is...

- Very large hypercube of AGN torus images (here the CLUMPY model, but you can plug in your own)
- A suite of Python tools to easily interact with the hypercube (slicing, loading, n-dim interpolation)
- Tools to simulate observations (to 1st order, 2nd maybe...) (single-dish giant telescopes and interferometers)
- Methods to analyze image morphology ("traditional" techniques, image moments, wavelets, ...)
- HYPERCAT also has the 2-d projected cloud maps (compare dust and light morphologies)
- ... all while hiding the complexity of the problem from the user.

Image hypercube

- ▶ CLUMPY SEDs, 1.2e6 param. combos, $N_{\lambda} = 119 \longrightarrow 0.5$ GB
- Image hypercube w/ same parameter sampling would be 15-50 TB!!
- ► Limit sampling (336k) & $N_{\lambda} = 25 \longrightarrow 0.9 \text{ TB}$ (271 GB compressed)

Get the hypercubes today!

- FTP: ftp://noao.edu/pub/nikutta/hypercat/
- Straight from your local dealer [ask me for my external HDD ;-)]

A D N A 目 N A E N A E N A B N A C N

 \rightarrow **3.2 CPU-years** to compute images *(once...)* (245 billion voxels in 9-dim space, plus dust maps)

Generate ideal image of the source

- \blacktriangleright IR radiative transfer is self-similar; L set scale: ${\it R}_{
 m dust} \propto \sqrt{L}$
- Interpolates image on n-dim hypercube for the vector of parameters

Multi-wavelength view

NGC1068 best-fit parameters from SED fitting (Lopez-Rodriguez+2018) $\sigma = 43, i = 75, Y = 18, N_0 = 4, q = 0.08, \tau_V = 70$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Hypercat GUI (very basic for now)

*	Hy	percat			÷ –	+	×
Model	Single-dish Interferometry IFU Morpholog	4					
HDF5 file	/home/robert/data/hypercat/hypercat_201810	31_all.hdf5	Pick file				
Colormap	inferno 🛁 🗆 invert 🖲 line	ar Clog					
			sig (d	eg) = 54	_	r.	
			i (deg	j) = 75			
200 -			Y = 1	8		_	
150			N = 7	.0			
150 -			q = 0.	.1			
100 -			tv = 8	0			
			wave	(micron) = 10.2		_	
50 -			PA (d	leg E of N) = 42			
			Upd	ate image	View in D	S9	
0 -					Save as F	ITS	
0	50 100 1	50 200					
* ←	·→ +Q ≅ 🖹						

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Simulate observations - PSFs from pupils

PSFs from pupil images (thank you, telescope consortia!)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Pretty big pupils...

Last week...

One of the GMT mirrors (8.4m) being polished in Tucson

Realistic observation simulations

NGC1068 best-fit parameters from SED fitting (Lopez-Rodriguez+2018) $\sigma = 43, i = 75, Y = 18, N_0 = 4, q = 0.08, \tau_V = 70$

PSF convolution + detector pixelization + noise

(日) (四) (日) (日) (日)

Realistic observation simulations

IFU-like observations

Moderate absorption at the center, mild emission in polar region

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Interferometric observations

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Multi-wavelength view

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Multi-wavelength view

NGC1068 best-fit parameters from SED fitting (Lopez-Rodriguez+2018) $\sigma = 43, i = 75, Y = 18, N_0 = 4, q = 0.08, \tau_V = 70$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Quantifying morphology - Example: measure size

Half-light radius

$$\frac{1}{F_{\rm tot}} \int_0^{R_{1/2}} {\rm d}r \, I \, 2\pi \, r = \frac{1}{2}$$

Gini coefficient

$$G = \frac{\sum_{i}(2i-n-1)\cdot I_{i}}{n\sum_{i}I_{i}}$$

Radii of gyration

$$R_{gx} = \sqrt{\mu_{20}/\mu_{00}}, \qquad R_{gy} = \sqrt{\mu_{02}/\mu_{00}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Quantifying morphology

Image moments

$$\mu_{pq} = \sum_{x} \sum_{y} I(x, y) (x - \bar{x})^{p} (y - \bar{y})^{q}$$

where \bar{x} , \bar{y} are the image centroid coordinates, and p, q are integers >= 0.

Some beneficial features of moments:

- independent of magnitude
- translation-invariant
- moment definitions exist that are scale- or rotation-invariant
- very easy to measure offsets, sizes, elongations, rotations, asymmetry (skew), peakedness (kurtosis)

Morphology size: Gini coefficient

All pixels same value: G = 0A single pixel non-zero: G = 1Uniform random: G = 1/3

 σ , N_0 , τ_V , $\lambda = 15 \deg, 1, 10, 2 \mu m$ σ , N_0 , τ_V , $\lambda = 75 \deg$, 12, 160, 18 μ m smallest morphology, G = 0.97largest morphology, G = 0.40y offset

x offset

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Radii of gyration

500

Half-right radius & radii of gyration

500

æ

Morphology elongation

Elongation as function of wavelength

200

Summary & Future

Summary

- Must model 3-d dust distros to produce physical 2-d brightness maps
- ▶ HYPERCAT empowers you to study resolved AGN imagery, pain-free
- Simple CLUMPY torus models can produce significant polar elongations (torus inner wall)
- NGC1068: the same model can give perpendicular orientations in N band and ALMA frequencies

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Models can fit SEDs well, and visibilities too; now must fit both simultaneously

Summary & Future

Summary

- Must model 3-d dust distros to produce physical 2-d brightness maps
- ► HYPERCAT empowers you to study resolved AGN imagery, pain-free
- Simple CLUMPY torus models can produce significant polar elongations (torus inner wall)
- NGC1068: the same model can give perpendicular orientations in N band and ALMA frequencies
- Models can fit SEDs well, and visibilities too; now must fit both simultaneously

Near future

- Submit paper 1 (January?)
- Assess detectability and resolvability of all nearby AGN, with all instruments (lead: Kohei Ichikawa)
- Compare models and all current + future resolved observations (lead: Enrique Lopez-Rodriguez)

Thank you! Gracias!

nikutta@noao.edu

www.clumpy.org

ftp://noao.edu/pub/nikutta/hypercat/

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00