Models of thick turbulent gas disks with magnetocentrifugal winds in AGN and their application to Circinus and NGC 1068

Bernd Vollmer

Observatoire astronomique de Strasbourg

M. Schartmann: 3D radiative transfer

- L. Burtscher: IR emission/visibilities
- F. Marin, R. Goosmann: 3D polarization model

S. Hönig, R. Davies

Vollmer et al. 2017, A&A, 615, 164

Massive turbulent thick gas disks

Massive turbulent thick gas disks close to the central black hole

What can a massive thick disk do for you?

- Scale: 1 10 pc
- Obscuration of the central engine (vertical disk stratification)
- High mass accretion rates (~ $1 M_{\odot}/yr$)
- No violent starburst
- Viscous heating leads to $T_{gas} \sim$ few 100 K at high densities
- Compton-thick reflector at inner edge (~ 1 pc)
- Transition to thin maser disk at $R \le 1 \text{ pc}$
- Necessity of a molecular/dusty wind/outflow to remove angular momentum and mass ->

decrease of the mass accretion rate toward the center

(slide from Torus2015 workshop)

The gas accretion scenario

- Event of high external mass accretion (from \geq 100 pc)
- Possibility of a pre-existing circumnuclear disk/ring
- Disk has to increase its viscosity to cope with the gas infall via turbulent adiabatic compression
 -> turbulent clumpy thick gas disk
- Magnetocentrifugal wind sets in where the polar magnetic field is bent by at least 30° -> magnetic diffusivity = viscosity (Lubow et al. 1994) or bending through radiation pressure
- Angular momentum taken away by the wind -> gas disk becomes thin
- Mass flux conservation: $\dot{M}_{\text{thick disk}} \dot{M}_{\text{wind}} \dot{M}_{\text{thin disk}} = 0$,

The model geometry

Model assumptions

- Axial symmetry, smooth gas distribution
- Strongly magnetized gas disk (energy density equipartition)
- Regular B field is about 1/3 of the total B field
- Massive gas disk not strongly affected by radiation pressure
- Wind might be shaped by radiation pressure, but magnetocentrifugal forces dominate
- Radius where the wind sets in is determined by mass flux conservation

Results

			Ľ)	$L^{\rm a}_{ m bol}$	$M_{ m BH}$	М	*	$v_{\rm rot}^{\rm c}$	v_{turb}^{d}	Ω ^e	$r_{ m wind}^{ m f}$
			(Mpc)		(erg s ⁻¹)	(M _☉)	(M ₍	∋pc [≛])	(km s ⁻¹)	(km s ⁻¹)		(pc)
	Circin	us 4.2		3 × 10 ⁴³	1.6 × 10 ⁶	1.0	× 10 ⁶	100	30	0.022	0.53	
	NGC 1068		14	.4	3 × 10 ⁴⁴	8.6 × 10 ⁶	3.0	× 10 ⁶	170	50	0.022	1.5
		M /M	gas dyn	Q	Φ_{A}	B_{p}^{a}	r _A	М _{thic} disk	^k	М _{thin} disk	$ ho_{ m B}(r_{ m wind})$	$p_{rad}(r_{wind})$
						(mG)	(pc)	(<i>M</i> _⊙ yr⁻¹)) (<i>M</i> ⊙) yr⁻¹)	(<i>M</i> ⊙ yr⁻¹)	(erg cm ^{−3})	(erg cm⁻³)
(Circinus	0.0	10	22	0.45	14	0.85	0.26	0.14	0.12	7.4 × 10 ⁻⁶	5.1 × 10 ⁻⁶
ן ב	NGC L068	0.0	16	15	0.42	15	2.4	1.57	0.85	0.73	8.5 × 10 ⁻⁶	6.2 × 10 ⁻⁶

Viable magnetocentrifugal winds

Terminal wind velocities

Radiative transfer models

Circinus model

NGC 1068 model

The inner puff-up

- Postulated ad-hoc in our model
- Needed for the NIR emission
- Observed in Young Stellar Objects

(e.g. Monnier et al. 2006)

The central extinction

Sy 1.5: <= 3 mag Sy 1.8-1.9: 4 - 8 mag Sy 2: > 10 mag

SEDs

Red model curves: additional screen with $\tau_{v}\text{=}20$

MIR luminosities

Crosses/pluses: Circinus model squares/triangles: NGC 1068 model green: i=50° orange: i=70° yellow: i=90°

MIR luminosities

Torus covering factor of 51 Sy1 galaxies: $f_c=0.3\pm0.17$ (Ezhikode et al. 2017) -> anisotropic illumination is preferred

NIR luminosities

Point source fraction (interferometry)

= flux density within $N \times r_{sub}$ divided by the total flux density

Point source fraction

MIR interferometry of Circinus

MIR interferometry of Circinus

MIR interferometry of NC 1068

Optical polarization

Conclusions

- Thick gas disks + magnetocentrifugal winds are viable
- Key ingredient: directly illuminated inner wall of the thick gas disk + wind
- cos(θ) illumination is prefereed
- About half of the MIR is emitted by the wind (depends on optical depth)
- Puff-up (and $A_v \sim 20$) screen are needed
- Central extinction, SED, L_{MIR}/L_{bol}, L_{NIR}/L_{MIR}, point source fraction, MIR interferometry, polarization
- Open questions: influence of clumpiness, what is the screen, where does the thick gas disk become thin, magnetic field strength, rotation of gas in the wind, wind optical depth -> AGN statistics