Ubiquitous Extended Fe K-alpha emission in AGN

NGC 1068

NuSTAR + XMM+Chandra spectroscopy Bauer et al. 2015

~14.4 Mpc

Fully CT (N_H>10²⁵ cm⁻²)

Water maser => 1e7 M_{BH}

 $L_{BOL} = 1e45 \text{ erg/s} => 0.5-0.8 L_{EDD}$

Ionization cone (aligned with radio jet)

XMM+NuSTAR+Chandra (Gal+Nuc) Spectral fit

XMM+NuSTAR+Chandra (Gal+Nuc) Spectral fit

TABLE 4 FE AND NI LINE FLUXES (M04 MODEL)

	XMM-Newton		Chandra	
Line	M04 ti <40''	his work <75''	HETG <2"	ACIS-S 2''-75''
Fe K α	44.3	47.4+1.9	38.9+3.8	17.5+3.3
Fe K α CS	8.7	3.8 ^{+1.5}	4.2+3.6	<15
Fe K β	9.1	8.9+II	4.3+3.1	< 5.2
Ni K α	5.6	5.8 ^{+1.8}	< 7.3	< 8.8
Ni K β	3.2	3.1 ^{+0.9}	<19.8	<16.8
Fe Be-like 6.57 keV	7.6*	8.0+1.5	$6.3^{+2.1}_{-2.5}$	3.9+2.9
Fe He-like 6.69 keV	22.8*	27.8 ^{+1.0}	12.8+3.9	6.1 ^{+2.4}
Fe H-like 6.97 keV	7.1*	8.2 ^{+0.8}	7.7 ^{+1.5}	< 6.1
Ni He-like 7.83 keV	2.7*	3.9+11	<10.2	<10.4

Bulk of Fe (+ 5-10 keV cont.) from lower N_H reflection. Bulk of 30 keV hump coming from high N_H reflection ~30-35% of Fe reflection from > 2" (i.e., >140pc!!)

Encountering signs of very complex multi-phase environments near AGN

Circinus Galaxy

NuSTAR + XMM+Chandra spectroscopy Arevalo et al. 2014

~4 Mpc

Fully CT (N_H>10²⁵ cm⁻²)

Water maser => warped disk + 1.5e6 М_{вн}

 $L_{BOL} = 4e43 \text{ erg/s} => 0.2 L_{EDD}$

Ionization cone (aligned with radio jet)

NGC 4945 NuSTAR + XMM+Chandra spectroscopy Puccetti et al. 2014

~4 Mpc

Moderate CT (N_H~4x10²⁴ cm⁻²)

Water maser => 1.4e6 M_{BH}

L_{BOL} = 4e43 erg/s => 0.1-0.3 L_{EDD}

Ionization cone (aligned w/ radio jet)

What about spatial distribution of Reflection? To investigate further, look at narrow Chandra images

A number of previous AGN studies have highlighted extended Fe Ka emission:

NGC 4945: Marinucci+17

ESO428–G014: Fabbiano+17

Compare 3 famous, nearby CTAGN

Circinus Galaxy

NGC 1068

NGC 4945

0.3-8.0 keV images

NGC 1068

CIRCINUS Fe Kalpha Line

6.3-6.5 keV

6.1-6.2 + 6.5-6.6 keV

= 20 pc

Circinus Galaxy

NGC 4945

Similar extent to what Marinucci+17 found.

What are we seeing?

- Bulk of Fe reflection likely (last) emitted at > 1pc out to > kpc scales
 - NOT from 0.4-1pc torus wall, as often (always?) assumed!
 - Extended Fe Ka produced in the central pc, but scattered at large radii due to neutral / ionised ISM mirror (*Thomson scattering*)?
 - OR Extended Fe Ka emission produce at large radii due to "dense" clouds or lines-of-sight (<u>Compton scattering</u>).
- Morphologies differ!
 - Fe Ka emission comes from variety of sight lines. Must depend on "internal" torus cloud geometry/structure & "external" structure of the ISM and ionisation cone scattering mirror.
 - Total spectra will give angle averaged X-ray reflection. Reflection fraction is at least in part based on ISM. Torus models will need to account for this.
- The spatially resolved morphology of the Fe Ka gives insight into structure of torus and/or mirror.
 - Fe Ka tomography can provide novel constraints on cloud density, number, and position.

morphology of various torus "tracers"

Correspondence between tracers is poor

morphology of Fe Kα an imprint of 1024 cm2 torus" of [OIII] an imprint of much lower N_H torus" of mid-IR an imprint of hot dust

What about other well-known AGN? Start with Asmus et al. 2015 sample ("representative") of 152 nearby AGN with IR and X-ray constraints + 28 others => 99 objects considered, although only fraction useful.

Simple statistic: estimate % of Fe Ka > 1" (corrected for PSF, 15%)

Ka EW images for 65 AGN so far...

NGC 2110 Sy 1

Fe Kalpha Line

---2

Fe Kalpha cont.

1" = 60 pc

10

1

Radius (arcsec)

WFPC2 F606W

NGC 4388 Sy 1.9

Fe Kalpha Line

Fe Kalpha cont.

1" = 60 pc

IC4329A Sy 1.2

Fe Kalpha Line

ö

Fe Kalpha cont.

1" = 370 pc

Fairall 9 Sy

Fe Kalpha Line

Fe Kalpha cont.

1

Radius (arcsec)

Ŧ 10

Fe Ka EW fractions for 43 AGN... (removed some weak Fe Ka sources)

Fe Ka extended in many AGN

Conclusions

- STILL WORK IN PROGRESS (refine statistics, model pile-up better, line variability, comparison with other parameters)
- Not surprisingly, "torus" complex multi-phase environments near AGN, with structural components on many scales. Variety of filling factors, covering factors, N_H?
- Most AGN have substantial extended Fe Ka emission, and when wellresolved, present potential variety of extended structures.
 => <u>Fe Ka Tomography</u> can allow constraints on individual tori.
- Ka fraction could capture AGN variability (echoes), as well as Galactic ISM morphology, in addition to standard covering factor.

Next generation X-ray telescopes could routinely make such observations, broadening sample to 100s-1000s of objects at least with good statistics (=> Ni, Fe, S, Si Ka?). With such samples, perhaps can address...

- How does larger scale structure tie into the AGN feeding process?
- How does structure change as a function of AGN luminosity (e.g., receding torus)?
- How does larger structure affect/relate to our classification schemes?

Many Fe Ka photons coming off material WAY out there?

Hoenig et al. 2012

Molinari et al. 2011

Galactic latitude