The Broad Line Region = Torus Is it The Torus?

Alexei Baskin & Ari Laor (2018)

1. The outer AD is a torus - unavoidable

- 2. The torus is a BLR unavoidable
- 3. Is there an additional torus?

What is the BLR?

The hard facts:

Dense photoionized gas, n ~ 10^{10} - 10^{12} cm⁻³ based on line ratios + photoionization models

Size: $R_{\rm BLR} = 0.1 L_{\rm bol,46}^{1/2}$ pc based on reverberation mapping at L ~ 10³⁹-10⁴⁷ erg s⁻¹

Velocity: ~ Keplerian based on consistent M_{BH} - bulge relations in galaxies

Why? and where does it come from?

Some earlier suggestions

UV line driven disk wind

Shlosman+, Murray+, Proga+ **Excluded**, size x100 too small

MHD + radiation driven disk wind

MHD driven disk wind

Emmering+, Lovelace+ **Excludable?**

BLR = A failed dusty disk wind?

Czerny & Hryniewicz (2011)

What is the predicted size of the BLR?

Outer radius set by dust sublimation due to *L*_{bol}

$$\frac{L_{\text{bol}}}{4\pi R_{\text{out}}^2} = 4\sigma T_{\text{sub}}^4 \quad \rightarrow \quad R_{\text{out}} = 0.2L_{\text{bol},46}^{1/2} \text{ pc}$$

Predicted: Netzer & Laor (1993), Observed: Suganuma et al. (2006)

Inner radius set by dust sublimation at the disk surface

$$\sigma T_{\text{eff}}^4 = \frac{3}{8\pi} \frac{GM\dot{M}}{R^3} \longrightarrow R_{\text{in}} = 0.018L_{\text{opt},45}^{1/2} \text{ pc.}$$

<u>Reverberation mapping results</u>: $R_{\rm BLR} = 0.1 L_{\rm bol,46}^{1/2}$ pc

First principles, no free parameters!

What is the dust kappa in the IR?

For electron scattering $\kappa_{es} = 0.4 \longrightarrow h$ is constant

For dust, depends on grain composition, grain size, wavelength

What is T_{sub}?

At T_{sub} sublimation = condensation -> T_{sub} is set by the gas density

Large graphite grains (>0.15mic) survive at the BLR

The EUV dust opacity

Dust opacity drops by a factor of 10, or larger, as small grains are destroyed. —> Gas opacity dominates, no dust suppression Efficient line emission

The near IR (2000K BB) dust opacity

The accretion disk H(R) with dust opacity

Dust inflated accretion disk Radiation pressure support vertical structure

What happens when the dust sees the real light?

Dynamic Solution

The BLR is likely a dust inflated outer disc

 $n\Delta r \sim 10^{10} \times 10^{17} \,\mathrm{cm}^{-2}$ CF ~ 0.3 *The Torus?*

Not the regular torus models

Vertical support

Local accretion disk IR

versus

UV/X-ray illumination (assuming initially thick)

Predictions

 $R_{\rm max} \propto L_{46}^{0.58} M_8^{0.08} \epsilon^{-0.33} (Z/Z_{\odot})^{0.26}$ $CF \propto L_{46}^{0.26} M_8^{0.09} \epsilon^{-0.70} (Z/Z_{\odot})^{0.56}$

Predictions

- 1. The BLR <u>cannot</u> extends inwards of $0.2R_{BLR}$
- 2. A maximal CF ~ 0.3
- 3. The BLR disappears (but NLR remains) $\dot{m} < (0.025, 0.0065, 6.5 \times 10^{-4}) \times (Z/Z_{\odot})^{-1}$
- 4. If $\dot{M}_{\rm BLR} \gg \dot{M}$ one can get an IR only source
- 5. If $\dot{M}_{BLR} \ll \dot{M}$ The BLR disappears, despite high \dot{m}

(see Baskin & Laor 2018)

Spectropolarimetric evidence

Capetti, Robinson, Marconi, Baldi, Laor 25 h on the VLT

A complete sample of type 1 AGN

Polarization P.A. || Radio axis

Planar scattering (not polar scattering) for both the continuum and the BLR

 $P_{BLR} < P_{cont}$

Geometric dilution \longrightarrow scattering close to the BLR (+ P.A. rotation)

The BLR itself? and nothing but the BLR?