High resolution imaging of the molecular torus in NGC 1052 with VLBI

Sawada-Satoh et al. 2016, ApJL 830 L3 Sawada-Satoh et al. 2018, submitted to ApJL

Satoko Sawada-Satoh¹, D.-Y.Byun², S.-S.Lee², S.-J.Oh², D.-G.Roh², S.Kameno³, J.-H.Yeom², D.-K.Jung², C.S.Oh², H.-R.Kim²,J.-Y.Hwang² 1: Kagoshima University, Japan, 2: Korea Astronomy and Space Science Institute, Korea, 3: Joint ALMA Observatory, Chile

Motivations & Backgrounds

Circumnuclear torus

- Fuel tank of mass accretion onto SMBH
- Invented by astronomers, to explain Seyfert 1 & 2
- ⊖ The size : < 10pc</p>
- How can we confirm it ?
 - Requirement of 1 milliarcsec (mas) resolution to image
 - VLBI can acheive it !

Molecular lines & VLBI

Molecular gas in AGN region

- Important clues to study AGN fueling
- Compact (pc scale)
- High column density (10²³⁻²⁴ cm⁻²)
- Advantages of VLBI
 - Can display thermal absorption in silhouette against a background synchrtron emission.
 - Sensitive to detect the compact and dense absorbing gas
 - Beam size smaller, filling factor larger

The target NGC 1052 (1)

The target NGC 1052 (2)

Molecular absorption at mm band
 HCO⁺(1-0), HCN(1-0), CO(1-0)
 Velocity: 1400-1800 km/s
 Redshifted with respect to V_{sys}
 Similar to OH and H₂O
 Infall from the torus ? or, another motion ?
 Location of the absorption is a key !

Observations

Korean VLBI Network (KVN) https://radio.kasi.re.kr/kvn/main_kvn.php The first dedicated mm-band VLBI array

fppt.com

Observations

KVN observation : HCN J=1-0

KVN observation : HCO⁺ J=1-0

Correlator	KJCC	Target	NGC 1052	
Rest Frequency	88.632 [GHz]	Transition	HCN J=1-0	
Beam size	1.5x0.9 [mas] (0.1pc)	Obs. date	2015/03/05	
Bandwidth	128 [MHz]	On-source time	7.5 hr	

Time gap : 27 months

CorrelatorKJCCTargetNGC 1052Rest Frequency89.188 [GHz]TransitionHCO+ J=1-0Beam size1.5x0.9 [mas] (0.1pc)Obs. date2017/06/17Bandwidth512 [MHz]On-source time7.5 hr

HCN (1-0) absorption with KVN

The first VLBI map of HCN (1-0) (Sawada-Satoh+ ApJ 830 L3, 2016)

- Two redshifted features, detected.
- The features around V_{sys}, not detected.
- Localized on the receding jet side.
 A depth of >10%, deeper with PdBI

A possible model

Several layers + clumpy HCN clouds (Sawada-Satoh+ 2016)
 High opacity localized on the receding jet => Inclined torus
 At least two narrow absorptions => Inhomogeneous, clumpy
 Redshifted velocity => Ongoing infall onto SMBH

HCO⁺ (1-0) absorption with KVN

The first VLBI detection of HCO+ (1-0) absorption line

Sawada-Satoh+ 2018, submitted

Broad (~500km/s) ! unlike HCN

- Slightly asymmetric with a blueshifted wing
- 🖯 A gaussian fit :
 - ⊖ FWHM : 272+-25km/s
 - e maximum depth : 0.06

HCO+ (1-0) absorption with KVN

Spectra of HCO⁺ (1-0) absorption at different locations

HCO+ (1-0) absorption with KVN

Channel maps of HCO+ absorption

Located on the receding jet side => support the torus model

What the HCO⁺ spectrum tells

⊖ Redshifted from V_{sys}

- Ongoing infall
- Same as HCN, OH, H₂O
- Broad width
 - Not thermal broadening
 - A complex of several clumps or structures with various difference velocities
 - Infall + turbulence + interaction + etc.

Physical properties from HCN

Column density of HCN 1-0 absorption

Sawada-Satoh+ ApJ 830 L3, 2016

Label	Vp	V _p -V _{sys}	Δv	N _{HCN} (T=100K)	N _{HCN} (T=230K)
	[km/s]	[km/s]	[km/s]	[10 ¹⁴ cm ⁻²]	[10 ¹⁴ cm ⁻²]
I	1656	149	31.7	9.5	50
I	1719	212	52.9	20	101

 $\mathbb{N}(H_2)$: 10²⁴-10²⁵ cm⁻² (HCN/H₂ ratio of 10⁻⁹; Smith & Wardle 14)

1-2 order higher than N(e) by FFA opacity (~10²³; Kameno+ 01)

 \bigcirc Infall rate : ~0.05-0.5 M_{sun}/yr $\dot{M} = f_v R_{\rm in} N_{\rm H} m_{\rm H} V_{\rm in} \Omega$

Comparable to the rate estimated from X-ray luminosities (~0.04; Wu & Cao 06)

Physical properties from HCO⁺

Column density of HCO+ 1-0 absorption

Sawada-Satoh+ 2018, submitted

HCO+	Vp	V _p -V _{sys}	Δ v	N _{HCN} (T=100K)	N _{HCN} (T=230K)
	[km/s]	[km/s]	[km/s]	[10 ¹⁴ cm ⁻²]	[10 ¹⁴ cm ⁻²]
	1658	151	272	8.8	46

N(H₂): 10²⁴-10²⁵ cm⁻² (HCO⁺/H₂ ratio of 2-3x10⁻⁹; Liszt & Lucas 00)

- Consistent with N(H₂) estimated from the HCN absorption.
- The column density ratio between HCN & HCO⁺ integrated over frequency : ~3.3
 - RHCN/HCO+ (~2.5) in CND knots of NGC1068 (García-Burillo+ 14)

Note that the background jet component can move with an apparent velocity of 0.26c (Vermeulen+ 03)

0.18 pc (almost 1 beamsize) during 27 months !

Summary

- Conducted KVN observations of the HCN(1-0) & HCO⁺(1-0) absorption in NGC 1052.
- Our HCN results are naturally explained by an AGN torus
 - Two HCN absorption features are identified at redshifted velocities.
 - Reached a depth of >10%, deeper than that of PdBI.
 - Found N(H₂) of 10²⁴--10²⁵ cm⁻² (HCN-to-H₂ ratio of 10⁹), assuming a Tex of 100--200 K
 - High opacity of HCN absorption localized on the receding jet
 - HCN gas is clumpy, and traces ongoing infall onto SMBH.
- The first VLBI detection of HCO⁺(1-0) absorption
 - A broad absorption feature (~500km/s). Infall + turbalence ?
 - Localised on the receding jet side. Torus ?