On the importance of polar dust in AGN

Daniel Asmus University of Southampton

with Sebastian Hönig & Marko Stalevski

Asmus et al. (2014)

Out of ~150 nearby AGN without strong nuclear star formation, 21 show extended nuclear mid-infrared emission

The resolved emission is coming from the polar axis of the AGN systems!

Angular difference (System Axis - MIR extension)

Asmus et al. 2016 (see also Braatz et al. 1993; Cameron et al. 1993; Bock et al. 2000; Radomski et al. 2002, 2003; Whysong & Antonucci 2004; Packham et al. 2005; Reunanen, Prieto & Siebenmorgen 2010; Hönig et al. 2010)

Is the mid-infrared emission of AGN dominated by dust in/along the ionisation cone instead of the obscuring torus?

Minimum relative amount of resolved emission

Asmus et al. (2016)

Hönig et al. (2012)

The reasons for the low detection rates

unresolved

intrinsic weakness

no elongation

Asmus et al. 2016

Is polar dust ubiquitous in AGN?

The resolved emission strongly correlates with the [OIV] emission produced in the ionisation cone

Asmus et al. 2016

The resolved emission strongly correlates with the [OIV] emission produced in the ionisation cone

Asmus et al. 2016

20 hours of A-ranked time for 12 & 18µm deep imaging with the upgraded VLT/VISIR of 9 objects with PSF reference

Extended MIR emission has clear preference for polar direction —> origin: polar dusty wind (?)

Asmus et al. (in prep.)

The polar dust is probably dominating the total mid-infrared emission of the AGN

So what is it: torus+ambient, torus+cone, disk+cone/wind, or all/none of the above?

CAT3D-WIND (Hönig & Kishimoto 2017)

Polar dust structure models by Stalevski et al.

NGC1386

disk:

- half opening angle: 10°
- $au_{9.7\mu m}$ in the plane = 6
- outer radius = 5pc
- flat & smooth density

polar wind:

- half opening angle: 20°
- τ_v along the cone wall = 1
- outer radius = 50pc
- flat & smooth density

Conclusions

- * Polar dust emission might be ubiquitous in AGN
- * Polar dust emission appears to dominate the total midinfrared emission of the AGN
- Disk + polar wind models fit the observed data better than "classical" clumpy torus models AND can reproduce morphology!
- The generation of instruments will allow to test the above

Dave Williamson's talk on Thursday!

see also poster by Marta Venanzi

Back-up Slides...

Establishing a system axis from ionisation cones [OIII], radio jets, maser disks, and polarized emission.

The resolved emission is not correlated to the host orientation.

Angular difference (System Axis - MIR extension)

Asmus et al. 2016

The outliers

- Seyfert 1.2
- [OIII] pointlike
- marginally resolved
- PA error
 see poster by sames Leftley James

- Seyfert 1.5/2
- wide opening ionisation cones
- edge-on spiral

emission traces host dust lane

- Seyfert 1.2
- wide opening ionisation cones
- weakest AGN in the sample
- Iow S/N

Polar elongation is dominant also on parsec scale as found with MIDI interferometry (Lopez-Gonzaga et al. 2016)

The small and large scale elongation are aligned and seem to trace the edge of the ionisation cone.

The mid-infrared—X-ray correlation for all types of AGN is driven by dust in the ionisation cones rather than the torus

Difference between type I and II is smaller than expected

