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Discovery

Antonucci & Miller (1985) find broad emission lines and
a blue continuum in polarized flux from NGC 1068

Immediate inferences:
 Optically thick, dusty obscuration on our line of sight
* Photons can travel through a hole in the center

* In the hole, photons scatter and acquire polarization

Immediate answer to a major question:
e Are type 1 and type 2 AGN
intrinsically the same kind of object?



Our Collective Program

e Characterize quantitatively via observations, kinematic models
e |ntuit and quantitatively test dynamical models

e Develop the “natural history” of matter in the torus and its hole:
what is its origin and what is its fate?

Ordered from most progress to least.



Properties to Describe

Global lengthscale, geometry

Density, temperature, chemical/ionization state: mean,
radial and vertical profiles, internal structure, range of
variation—over time and for different examples

Velocity (at least line-of-sight)
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H20O masers—Iine-of-sight
velocity profile, central mass

* Viot ~ 100—300 km/s

* sometimes, but not always,
straight + Keplerian —> mass;

e strong amplification on our |-0-s
depends on details of
excitation, velocity shear
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Tools

IR spectra—temperature, B ——
optical depth, dust composition

best—fit SED model

- - — SED of interferometry model

Directly demonstrates dust temperature,
obscuration area and solid angle
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ESO 323-G77

Parameterized models can only show consistency;
what is the physical basis of clumping?
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Dynamics

e [Fundamental problem—

N(1)/N(2) —> H/R ~ 1, but in hydrostatic equilibrium, cs/vVors = H/R ~ 1;
Cs/Vorb ~ 1 implies temperatures much too high for dust to survive

e Possible alternatives—
> clumped gas, supersonic random motions
> torus is dynamic, not static—but how, exactly?
> support from magnetic fields?
> support from radiation force?
thermal IR dust opacity ~ 20—30 x Thomson
—> L/Le >~ 0.1 —> dynamically significant Fad
> H/R ~ 1 applies in places, but not everywhere
> instead of H/R ~ 1, the disk is warped



Simulations: The Contemporary Gateway to Dynamics

Much physics necessary for a complete description:

MHD (magnetic pressure support, angular
momentum transport, outflows)

Radiation transport and forces (gas equation of state,
vertical support, outflows)

Photoionization; dust sublimation, spallation (defining
the inner edge and dynamics within the hole)

Implementing any one of these, much less all of them
self-consistently, is impossible with analytic methods.



Some Conceptual Results from Simulations

e Fat orbiting structures in dynamical equilibrium must have sub-
Keplerian angular momentum

Pressure great enough for H/R ~ 1 implies energy density ~ p Vorb? ;
If isotropic, this pressure substitutes for rotational support
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Some Conceptual Results from Simulations

* Radiation-driven wind along the torus inner edge almost
iInescapable; neutral column density ~1 IR optical depth

UV and IR radiation force on dust

Chan & K. 2017
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Some Conceptual Results from Simulations

e \Warps must be maintained

Warps in disks —> radial pressure gradients —> transonic radial flows
—> angular momentum mixing —> flattening on an orbital timescale
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Origin and Fate of Torus Material

e \What is the source?
interstellar clouds from surrounding ISM on elliptical orbits?
smooth(er) flow made from merged stellar winds?

Cf. Bondi accretion rate ~ 80 ns Avao3 M7 Me/yr

e \What holds back (or retards) the inflow to build up the observed large
column densities?

Is it angular momentum-limited?
* \Where does the matter go after passing through the torus inner edge?

What fraction exits in a wind, and is it fully unbound? Is it the X-ray
warm-absorber?

Where does the captured fraction go, and in what state?

Is there a feedback loop (with an inflow-timescale delay) between
captured torus matter and “evaporation” from the torus inner edge?



Conclusions

For the participants of this meeting to determine!



