Mitigating X-ray Obscuration Biases with Isotropic AGN Selection

Peter Boorman
PhD Student - University of Southampton

With Poshak Gandhi (Southampton), Seb Hönig (Southampton), Dan Stern (JPL), Fiona Harrison (Caltech), Mislav Baloković (BHI), Claudio Ricci (UDP), Franz Bauer (PUC), Daniel Asmus (Southampton), Lauranne Lanz (Dartmouth) & the NuSTAR AGN Team

TORUS2018 • Dec 14 • soton.ac.uk/~pgb2g11 • @boorm
Key Questions

1. How prevalent are the most obscured AGN?

2. How can we construct a representative census of the most obscured AGN?
Predicted **Prevalence** of Obscuration

Tasnim Ananna+18

> 50% of z < 1 AGN are Compton-thick

(Also Comastri+95, Mushtozky+00, Gandhi+03, Gilli+07, Treister+09, Aird+15)
Our Cosmic Backyard

Circinus

NGC 4945

Cen A

We are here

100% heavily obscured

1 Mpc Extragalactic Objects
Our Cosmic Backyard

We are here

100% heavily obscured

67^{+97}_{-54} % Compton-thick

1 Mpc Extragalactic Objects
Swift/BAT Compton-thick AGN

Bias-corrected 27%

Ricci+15

20 Mpc

Compton-thick

D / Mpc

Fraction

0 20 40 60 80 100

0.0 0.2 0.4
Missed Compton-thick AGN

NGC 4968
Lamassa+17
+in prep.

ESO 116-18
Zhao+18

NGC 1320
Baloković+14

IC 3639
Boorman+16.

NGC 449, IC 4995
Guianazzi+05

Mrk 573
2M 2139
Boorman+, in prep.

ESO 18-9
UGC 9944
2M 2355

NGC 7674
Gandhi+17
1. How prevalent are the most obscured AGN?

2. How can we construct a representative census of the most obscured AGN?
Mid-infrared Isotropy

(Also Buchanan+06, Horst+08, Levenson+09, Gandhi+09, Lawrence & Elvis 10, Hönig+11)
Isotropic Selection – IRAS Flux Cut

Inherent prevalence of Type 1 & 2 AGN
Infrared Classification - Warm Colours

-de Grijp+1987 Selection

Non-active Galaxy

Active Galaxy

Normalized νF_ν

$\lambda / \mu m$

Mullaney+11 templates
Optical Classification

• **Line ratio diagnostics - Keel+94**

 • May miss AGN with **large scale host dust** (e.g., Goulding+09, Buchner+17)

 • Would lead to **lower limit on obscured fraction**
Type 1: 36
Type 2: 48
Swift/BAT-Undetected
(70-Month): 38

\[N_{\text{uLANDS}} = \text{NuSTAR LOCAL AGN N}_h \text{ DISTRIBUTION SURVEY} \]
Representative? **Optical traces infrared**

![Graph and diagram showing optical and infrared traces with respective CDFs and histograms.](image)

- **CDF**: Cumulative Distribution Function
- **N**: Number of observations
- **NLR e.g. [OIII]**: Narrow Line Region
- **SMBH**: Supermassive Black Hole
- **Corona**: Corona region
- **Gas+Dust Torus**: Gas and Dust Torus

Boorman+, in prep.
Representative? **X-ray does not trace infrared**

- **Type 1**
- **Type 2**

![Diagram showing X-ray emission from different regions](image)

Boorman+, in prep.

Log $F_{14-195\,\text{keV}} / F_{60\mu\text{m}}$
Compton-thick candidates

Boorman+, in prep.

Swift/BAT Signal to Noise

Should have been detected...

Predicted from IR
Compton-thick candidates

But *weren’t!*

Observed

Predicted from IR

Should have been detected...

Swift/BAT Signal to Noise

Boorman+, in prep.
Directly Observed N_H Distribution (so far)

- NuLANDS Boorman+, in prep.
- Observed \textit{Swift}/BAT
- Ricci+15, 17

\[\log N_H / \text{cm}^{-2} \]
How can we construct a **representative census** of the most obscured AGN?

- NuLANDS is N_H - unbiased selection
- We find many **Compton-thick AGN** missed by BAT - **complementary**
- Obscured fraction may still be **lower limit** due to **classifications**
¡Muchas gracias!

soton.ac.uk/~pgb2g11