Resolving AGN central engines with GRAVITY -
The BLR in the Quasar 3C 273

Eckhard Sturm
MPE

with J. Dexter, Y. Clenet, R. Davies, A. Eckart,
F. Eisenhauer, R. Genzel, D. Gratadour,
S. Hönig, M. Kishimoto, S. Lacour, D. Lutz, F. Millour,
H. Netzer, G. Perrin, B. Peterson, P.O. Petrucci,
O. Pfuhl, D. Rouan, M. R. Stock, I. Waisberg, J. Woillez,
and the GRAVITY collaboration
with

I) The GRAVITY endeavour - some historical remarks

II) Spectro-differential astrometry

III) 3C 273

IV) Context: Broad Line Regions (BLRs), Reverberation Mapping (RM), and Black Hole masses

V) What dreams may come
The GRAVITY Family
Milestones:
• project kick-off: 2005-2006
• Installation on VLTI Jul.-Sept. 2015
• 1st AT light: October 2015
• 1st UT light: May 2016
GRAVITY: all over the place in VLTI!

In addition to the beam combiner:

- 4 infrared adaptive optics (CIAO)
- Metrology sensors (UTs and ATs) for high precision astrometry and phase reference imaging
What’s in the box

- Fiber coupler
- Fiber system
- Acquisition camera
- Spectrographs
- Detectors
- Integrated optics
II) Spectro-differential astrometry with the near-IR interferometer GRAVITY

Angular resolution: 3.5 mas @ 2.2 µm

GRAVITY

~ 130 m
Reminder: Signatures of (Kepler) rotation

Velocity Map

Channel Map
(Line intensity map for different channels/velocities)

→ Photocentre displacement perpendicular to the rotation axis
Model-independent photocenter map

\[\Delta \phi(\lambda) = -2\pi \frac{r(\lambda)}{1+r(\lambda)} \left[\vec{u}(\lambda) \cdot \vec{\epsilon}(\lambda) \right] \]

• From measured phases, fit for 2D photocenter on sky at each wavelength

• Bright quasar, $L \sim L_{\text{Edd}}$
• Radio loud: known position angle on sky

Hubble Space Telescope images and radio (Merlin) images
Jester+2006 (Chandra)
III) 3C 273 with GRAVITY

\[\Delta \phi(\lambda) = -2\pi \frac{r(\lambda)}{1 + r(\lambda)} \left[\vec{u}(\lambda) \cdot \vec{e}(\lambda) \right] \]

\[PA_{\text{Jet}} = 222^\circ \]

photocenter

10µas = 0.03pc

GRAVITY collaboration+, NATURE 2018
• A spatial velocity gradient (i.e., different photocenter positions) corresponds to wavelength-dependent phase shifts.
3C 273

radial velocity (km/s)

differential phase (°)

Pa α flux

normalized flux

observed wavelength (µm)
A rotating, thick disk BLR model

- Kinematic “cloud” model fit to line profile, phases (R. Stock et al.; following Pancoast+ 2014, Rakshit+ 2015)
GRAVITY collaboration+, NATURE 2018

radial velocity (km/s)

Pa α flux

differential phase ($^\circ$)

normalized flux

rms ~ 0.05 deg

observed wavelength (μm)
3C 273 - A rotating, thick disk BLR viewed face-on

- Kinematic “cloud” model fit to line profile, phases (R. Stock)
- $i = 12^{+/-2}$, PA = $210^{+/-10}$ deg (aligned w/ jet in 2D)

- $R_{BLR} = 46^{+/-10}$ μas * 150 +/-40 lt-d

- $M_{BH} = 2-4 \times 10^8 \ M_{\odot}$

* 10 μas = 0.03pc

GRAVITY collaboration+, NATURE 2018
Independent check of compact BLR size:

3C 273 differential visibility amplitude (blue) averaged over all epochs and between the two longest (UT4-1, UT3-1) baselines. The amplitude increases at the spectral line (black), demonstrating that the broad line region must be much smaller in size than the hot dust continuum (R ~ 150 μas).
The kinematics of the BLR of 3C 273 is dominated by rotation

\[R_{\text{BLR}} = 46 \pm 10 \, \mu\text{as} \quad \text{(or 150\!/\!-40 \, \text{light days, or 0.13 pc})} \]

\[M_{\text{BH}} = 2 \times 10^8 \, M_{\text{sun}} \]

*10 \, \mu\text{as} = 0.03 \, \text{pc at the distance of 3C 273}
IV) Context: Broad Line Regions (BLRs), Reverberation Mapping (RM), and Black Hole masses
Broad Line Regions, Reverberation Mapping (RM), and Black Hole masses

Reverberation mapping: $R_{BLR} \sim c \tau$

Spectroscopy: $\Delta v \sim FWHM$

$$GM_\ast = f R_{BLR}(\Delta v)^2$$

Time delay: $\tau = (1 + \text{Cos } \theta) r/c$
Broad Line Regions, Reverberation Mapping (RM), and Black Hole masses

- This requires monitoring over long periods of time (often many years), which is laborious and time consuming.

- RM observations have established a BLR radius – AGN luminosity relation (and hence a mass – luminosity relation) as powerful diagnostic tool

\[R_{BLR} = bL^\alpha \]
(Almost) all BH masses to date are measured like this !!
This is the only available method for measuring black hole mass in large surveys and out to high redshift

→ key role in our understanding of black hole growth over cosmic time.
Broad Line Regions, Reverberation Mapping (RM), and Black Hole masses

Comparison **GRAVITY** vs. RM for 3C273

- \(R_{\text{BLR}} = 46 \pm 10 \, \mu\text{as} \)
 - 150\(+/-40\) l.t.d
 - RM: < 100 - 380

- \(M_{\text{BH}} = 2-4 \times 10^8 \, M_{\odot} \)
 - RM: 3-8 \times 10^8

- BLR rotation dominated
• BLR kinematics and structure as well as M_{BH} are consistent with RM results (for this one object); i.e. these findings support the use of virial relations to measure quasar masses.
Summary

- spectro-differential astrometry with the near-infrared interferometer GRAVITY on the VLTI reaches a precision of 10μas ($=0.03$pc at $D=550$ Mpc for 3C273)

- The BLR in 3C273 is dominated by ordered rotation

- BLR kinematics and structure as well as M_{BH} are consistent with RM results (for this one object); i.e. these findings support the use of virial relations to measure quasar masses.

- Potentially a new, independent tool to understand BLR physics and to improve AGN black hole mass determinations.

- Potentially a new, powerful tool for measuring torus size and structure, etc.